【转】C++矩阵处理工具——Eigen
来自:http://blog.csdn.net/abcjennifer/article/details/7781936
最近和一些朋友讨论到了C++中数学工具的问题,以前总是很2地自己写矩阵运算,或者有时候在matlab里计算了一些数据再往C程序里倒,唉~想想那些年,我们白写的代码啊……人家早已封装好了!首先推荐几个可以在C++中调用的数学平台:eigen、bias、lapack、svd、CMatrix,本文着重eigen做以讲解,希望对各位有所帮助。
下面是本文主线,主要围绕下面几点进行讲解:
Eigen是什么?
Eigen3哪里下载?
Eigen3的配置
Eigen3 样例代码有没有?
去哪里更深入学习?
Eigen是什么?
Eigen是C++中可以用来调用并进行矩阵计算的一个库,里面封装了一些类,需要的头文件和功能如下:
Eigen的主页上有一些更详细的Eigen介绍。
Eigen3哪里下载?
这里是我下好的,这里是官网主页,请自行下载,是个code包,不用安装。
Eigen的配置
直接上图了,附加包含目录那里填上你放Eigen文件夹的位置即可。
Eigen的样例代码有没有?
当然有,这篇文章重点就是这里!
以下是我整理的一些常用操作,基本的矩阵运算就在下面了,算是个入门吧~主要分以下几部分:
建议大家放到编译环境里去看,因为我这里有一些region的东西,编译器下更方便看~
#include <iostream> #include <Eigen/Dense> //using Eigen::MatrixXd; using namespace Eigen; using namespace Eigen::internal; using namespace Eigen::Architecture; using namespace std; int main() { #pragma region one_d_object cout << "*******************1D-object****************" << endl; Vector4d v1; v1<< 1,2,3,4; cout << "v1=n" << v1 << endl; VectorXd v2(3); v2 << 1,2,3; cout << "v2=n" << v2 << endl; Array4i v3; v3 << 1,2,3,4; cout << "v3=n" << v3 << endl; ArrayXf v4(3); v4 << 1,2,3; cout << "v4=n" << v4 << endl; #pragma endregion #pragma region two_d_object cout << "*******************2D-object****************" << endl; //2D objects: MatrixXd m(2,2); //method 1 m(0,0) = 3; m(1,0) = 2.5; m(0,1) = -1; m(1,1) = m(1,0) + m(0,1); //method 2 m << 3,-1, 2.5,-1.5; cout << "m=n" << m << endl; #pragma endregion #pragma region Comma_initializer cout << "*******************Initialization****************"<< endl; int rows=5; int cols=5; MatrixXf m1(rows,cols); m1 << ( Matrix3f() << 1,2,3,4,5,6,7,8,9 ).finished(), MatrixXf::Zero(3,cols-3), MatrixXf::Zero(rows-3,3), MatrixXf::Identity(rows-3,cols-3); cout << "m1=n" << m1 << endl; #pragma endregion #pragma region Runtime_info cout << "*******************Runtime Info****************" << endl; MatrixXf m2(5,4); m2 << MatrixXf::Identity(5,4); cout << "m2=n" << m2 << endl; MatrixXf m3; m3=m1*m2; cout << "m3.rows()=" << m3.rows() << " ; " << "m3.cols()=" << m3.cols() << endl; cout << "m3=n" << m3 << endl; #pragma endregion #pragma region Resizing cout << "*******************Resizing****************"<< endl; //1D-resize v1.resize(4); cout << "Recover v1 to 4*1 array : v1=n" << v1 << endl; //2D-resize m.resize(2,3); m.resize(Eigen::NoChange, 3); m.resizeLike(m2); m.resize(2,2); #pragma endregion #pragma region Coeff_access cout << "*******************Coefficient access****************" << endl; float tx=v1(1); tx=m1(1,1); cout << endl; #pragma endregion #pragma region Predefined_matrix cout << "*******************Predefined Matrix****************" << endl; //1D-object typedef Matrix3f FixedXD; FixedXD x; x=FixedXD::Zero(); x=FixedXD::Ones(); x=FixedXD::Constant(tx);//tx is the value x=FixedXD::Random(); cout << "x=n" << x << endl; typedef ArrayXf Dynamic1D; //或者 typedef VectorXf Dynamic1D int size=3; Dynamic1D xx; xx=Dynamic1D::Zero(size); xx=Dynamic1D::Ones(size); xx=Dynamic1D::Constant(size,tx); xx=Dynamic1D::Random(size); cout << "xx=n" << x << endl; //2D-object typedef MatrixXf Dynamic2D; Dynamic2D y; y=Dynamic2D::Zero(rows,cols); y=Dynamic2D::Ones(rows,cols); y=Dynamic2D::Constant(rows,cols,tx);//tx is the value y=Dynamic2D::Random(rows,cols); #pragma endregion #pragma region Arithmetic_Operators cout << "******************* Arithmetic_Operators****************" << endl; //add & sub MatrixXf m4(5,4); MatrixXf m5; m4=m2+m3; m3-=m2; //product m3=m1*m2; //transposition m5=m4.transpose(); //m5=m.adjoint();//伴随矩阵 //dot product double xtt; cout << "v1=n" << v1 << endl; v2.resize(4); v2 << VectorXd::Ones(4); cout << "v2=n" << v2 << endl; cout << "*************dot product*************" << endl; xtt=v1.dot(v2); cout << "v1.*v2=" << xtt << endl; //vector norm cout << "*************matrix norm*************" << endl; xtt=v1.norm(); cout << "norm of v1=" << xtt << endl; xtt=v1.squaredNorm(); cout << "SquareNorm of v1=" << xtt << endl; #pragma endregion cout << endl; }
去哪里更深入学习?
Please refer to Eigen中的类及函数、Eigen的官方教程,和一些教程上的相关内容。