【转】C++矩阵处理工具——Eigen
来自:http://blog.csdn.net/abcjennifer/article/details/7781936
最近和一些朋友讨论到了C++中数学工具的问题,以前总是很2地自己写矩阵运算,或者有时候在matlab里计算了一些数据再往C程序里倒,唉~想想那些年,我们白写的代码啊……人家早已封装好了!首先推荐几个可以在C++中调用的数学平台:eigen、bias、lapack、svd、CMatrix,本文着重eigen做以讲解,希望对各位有所帮助。
下面是本文主线,主要围绕下面几点进行讲解:
Eigen是什么?
Eigen3哪里下载?
Eigen3的配置
Eigen3 样例代码有没有?
去哪里更深入学习?
Eigen是什么?
Eigen是C++中可以用来调用并进行矩阵计算的一个库,里面封装了一些类,需要的头文件和功能如下:

Eigen的主页上有一些更详细的Eigen介绍。
Eigen3哪里下载?
这里是我下好的,这里是官网主页,请自行下载,是个code包,不用安装。
Eigen的配置

直接上图了,附加包含目录那里填上你放Eigen文件夹的位置即可。
Eigen的样例代码有没有?
当然有,这篇文章重点就是这里!
以下是我整理的一些常用操作,基本的矩阵运算就在下面了,算是个入门吧~主要分以下几部分:

建议大家放到编译环境里去看,因为我这里有一些region的东西,编译器下更方便看~
#include <iostream>
#include <Eigen/Dense>
//using Eigen::MatrixXd;
using namespace Eigen;
using namespace Eigen::internal;
using namespace Eigen::Architecture;
using namespace std;
int main()
{
#pragma region one_d_object
cout << "*******************1D-object****************" << endl;
Vector4d v1;
v1<< 1,2,3,4;
cout << "v1=n" << v1 << endl;
VectorXd v2(3);
v2 << 1,2,3;
cout << "v2=n" << v2 << endl;
Array4i v3;
v3 << 1,2,3,4;
cout << "v3=n" << v3 << endl;
ArrayXf v4(3);
v4 << 1,2,3;
cout << "v4=n" << v4 << endl;
#pragma endregion
#pragma region two_d_object
cout << "*******************2D-object****************" << endl;
//2D objects:
MatrixXd m(2,2);
//method 1
m(0,0) = 3;
m(1,0) = 2.5;
m(0,1) = -1;
m(1,1) = m(1,0) + m(0,1);
//method 2
m << 3,-1,
2.5,-1.5;
cout << "m=n" << m << endl;
#pragma endregion
#pragma region Comma_initializer
cout << "*******************Initialization****************"<< endl;
int rows=5;
int cols=5;
MatrixXf m1(rows,cols);
m1 << ( Matrix3f() << 1,2,3,4,5,6,7,8,9 ).finished(),
MatrixXf::Zero(3,cols-3),
MatrixXf::Zero(rows-3,3),
MatrixXf::Identity(rows-3,cols-3);
cout << "m1=n" << m1 << endl;
#pragma endregion
#pragma region Runtime_info
cout << "*******************Runtime Info****************" << endl;
MatrixXf m2(5,4);
m2 << MatrixXf::Identity(5,4);
cout << "m2=n" << m2 << endl;
MatrixXf m3;
m3=m1*m2;
cout << "m3.rows()=" << m3.rows() << " ; "
<< "m3.cols()=" << m3.cols() << endl;
cout << "m3=n" << m3 << endl;
#pragma endregion
#pragma region Resizing
cout << "*******************Resizing****************"<< endl;
//1D-resize
v1.resize(4);
cout << "Recover v1 to 4*1 array : v1=n" << v1 << endl;
//2D-resize
m.resize(2,3);
m.resize(Eigen::NoChange, 3);
m.resizeLike(m2);
m.resize(2,2);
#pragma endregion
#pragma region Coeff_access
cout << "*******************Coefficient access****************" << endl;
float tx=v1(1);
tx=m1(1,1);
cout << endl;
#pragma endregion
#pragma region Predefined_matrix
cout << "*******************Predefined Matrix****************" << endl;
//1D-object
typedef Matrix3f FixedXD;
FixedXD x;
x=FixedXD::Zero();
x=FixedXD::Ones();
x=FixedXD::Constant(tx);//tx is the value
x=FixedXD::Random();
cout << "x=n" << x << endl;
typedef ArrayXf Dynamic1D;
//或者 typedef VectorXf Dynamic1D
int size=3;
Dynamic1D xx;
xx=Dynamic1D::Zero(size);
xx=Dynamic1D::Ones(size);
xx=Dynamic1D::Constant(size,tx);
xx=Dynamic1D::Random(size);
cout << "xx=n" << x << endl;
//2D-object
typedef MatrixXf Dynamic2D;
Dynamic2D y;
y=Dynamic2D::Zero(rows,cols);
y=Dynamic2D::Ones(rows,cols);
y=Dynamic2D::Constant(rows,cols,tx);//tx is the value
y=Dynamic2D::Random(rows,cols);
#pragma endregion
#pragma region Arithmetic_Operators
cout << "******************* Arithmetic_Operators****************" << endl;
//add & sub
MatrixXf m4(5,4);
MatrixXf m5;
m4=m2+m3;
m3-=m2;
//product
m3=m1*m2;
//transposition
m5=m4.transpose();
//m5=m.adjoint();//伴随矩阵
//dot product
double xtt;
cout << "v1=n" << v1 << endl;
v2.resize(4);
v2 << VectorXd::Ones(4);
cout << "v2=n" << v2 << endl;
cout << "*************dot product*************" << endl;
xtt=v1.dot(v2);
cout << "v1.*v2=" << xtt << endl;
//vector norm
cout << "*************matrix norm*************" << endl;
xtt=v1.norm();
cout << "norm of v1=" << xtt << endl;
xtt=v1.squaredNorm();
cout << "SquareNorm of v1=" << xtt << endl;
#pragma endregion
cout << endl;
}
去哪里更深入学习?
Please refer to Eigen中的类及函数、Eigen的官方教程,和一些教程上的相关内容。